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PREFACE

Two computer simulation models have been developed at The Rand

Corporation for studying means of sustaining and improving wartime

sortie-generation capabilities at airbases. TSAR (Theater Simulation of

Airbase Resources) is a detailed simulation of the airbase activities

required to generate aircraft sorties. TSARINA creates sample patterns

of airbase damage from airbase attacks; the output of TSARINA can be

used as input to TSAR to permit evaluation of the effects of attacks on

sortie generation.

One of the outputs of TSARINA is a list of damaged aircraft taxiway

sections and the extent of the damage (the number and sizes of the bomb

craters in each section). In TSAR, taxiway repair resources are

allocated to repair the damaged taxiway sections and clear paths of

taxiwavs from the runway to the aircraft locations. The heuristic rule

presented in this Note was developed to provide TSAR with a

straightforward means for determining near-optimal schedules for

repairing the damaged taxiway sections.

The work on TSAR and TSARINA was carried out under the Project AIR

FORCE Resource Management Program project entitled "Strategies To

Improve Sortie Production in a Dynamic Wartime Environment."



SUMMARY

After an attack on an airbase, the system of taxiways that connect

aircraft shelters or parking areas to the airbase runway may be so

damaged that some of the aircraft are not able to reach the runway.

These aircraft will not be able to fly sorties until the taxiways are

repaired enough to clear paths from the aircraft locations to the

runway.

In this Note, the Taxiway Repair Schedule Problem is defined to be

the problem of finding the optimal sequence for repairing the damaged

taxiway sections, assuming that each section has a known repair time and

that the sections are repaired one at a time. An optimal taxiway repair

sequence minimizes the average time that aircraft have been denied

access to the runway.

Two procedures are presented for selecting repair schedules: one,

a branch-and-bound algorithm, actually determines an optimal schedule,

but at a high computational cost (which becomes infeasibly high for

large numbers of damaged taxiway sections); the second, a heuristic

rule, is computationally simple but does not select optimal schedules

for all problems. The two procedures are compared for 100 example

problems.



-Vii-

ACKNOWLEDGMENT

The author is indebted to L. W. Miller, a Rand consultant, for

several suggestions that improved the substance and content of this

Note. In particular, he suggested the final version of the arc

selection criterion for the heuristic rule. This criterion is (both

conceptually and computationally) simpler than the one originally used

and, on the average, selected better repair schedules for the 100 sample

problems of Sec. IV than did the original criterion, although it

selected two fewer optimal schedules.



-ix-

CONTENTS

PREFACE .................................................... iii

SUMMARY .............................................. ..... v

ACKNOWLEDGMENT ............................................... vii

Section
I. INTRODUCTION ........................................... 1

II. THE HEURISTIC RULE .................................... 7
Steps in the Heuristic Rule ....................... 7
An Example Taxiway Repair Schedule Problem ... 8

It[. A BRANCH-AND-BOUND SOLUTIN .......................... 13
Lower Bounds for the PRS Classes ................... 15
Pruning the Tree (EliminaLion of PRS Classes) ..... 17
Branching Strategies ............................... 18
A Sizplified Algorithm "hen the Reduced

Taxiway Network Eas No Loops .................... 19
The Optimal Solution for the Example Problem ..... 21

IV. RESULTS FOR EXAMPLE PROBLEMS ........................ 24

Appendix: SOME COMPUTER PROGRAM DETAILS .................... 27

REFERENCES ................................................. 31

II-



I. INTRODUCTION

A bombing attack on an airbase may so damage the system of taxiways

that lead from aircraft shelter and parking locations to the base runway

that some of the aircraft cannot reach the runway. The Taxiway Repair

Schedule Problem, as defined below, is concerned with determining a

repair schedule minimizing the average time that the aircraft do not

have access to the runway through paths of undamaged or repaired

taxiways. The more general problem of allocation of repair resources

when both taxiways and runway are damaged is not considered.

Figure 1 depicts the aircraft shelters, taxiways, and runway of an

example airbase similar to an actual NATO airbase. Typically, there are

three separate squadron areas containing aircraft shelters or parking

aprons with the aircraft locations in each squadron area interconnected

by a set of taxiways. Each squadron area is connected directly to the

runway or to parking aprons by two or more taxiways, and the parking

aprons are joined to the runway by additional taxiways.

The complex of aircraft locations and taxiways are treated as a

network. Nodes represent locations of aircraft or the intersections of

taxiways with other taxiways or the runway (the runway is represented as

a single node). Arcs represent the sections of taxiways between nodes.

We associate with each node the number of aircraft in shelters or

parking areas at the node and with each arc the repair time of the

taxiway section represented by the arc. Figure 2 contains a simplified

network representation for the airbase of Fig. 1. In the figure, node 1

represents the runway and the numbers alongside the nodes the numbers of
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aircraft at the nodes--small segments of taxiways (stubs) that connect

the aircraft locations to taxiways have been ignored in this example.

Since an aircraft can not fly until &. clear path of taxiways

connects the aircraft location with the runway, a measure of the loss of

productivity of an aircraft is the elapsed time before the aircraft has

access to the runway after the bombing attack. It is assumed that each

damaged arc has a repair time associated with it and that the arcs are

repaired one at a time until all aircraft have access to the runway.

The repair times are assumed to have integral values but the unit of

time is arbitrary; it can simply be the number of bomb craters to be

filled, assuming one bomb crater can be filled in one unit of time. The

repair times are assumed to be independent of the order in which the

arcs are repaired; the time to travel between arcs is assumed to be

either insignificant compared with the repair times or independent of

the distance between arcs. (The heuristic rule presented here could be

easily modified to include repair times dependent upon the order in

which the arcs are repaired.) The sequence of arcs repaired over time

is a "repair schedule" and the sum of the times for each aircraft to

have a path cleared to the runway as arcs are repaired is the "loss"

associated with that repair schedule. The Taxiway Repair Schedule

Problem is to find the repair schedule that has the minimum loss or,

equivalently, that minimizes the average time before all the aircraft

have access to the runway.

When there are several taxiway repair teams on an airbase, it may

be necessary (or much more efficient) for each arc to be repaired by a
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separate team. The repair schedule optimization problem is then

different from the one formulated here, but the a-c repair sequence

selected by the heuristic rule of Sec. II can still be used as the order

in which damaged arcs are assigned to repair teams.

If there are N arcs to be repaired, then there are N! different

possible repair schedules. Since, for example, with N as small as 10

there are over 3 million different possible repair schedules, any

algorithm that determines the optimal schedule must examine only a small

portion of the repair schedules to be computationally feasible for very

large N. The heuristic rule presented in Sec. II examines a maximum of

N(N+l)/2 partial repair schedules; the branch-and-bound optimization

algorithm of Sec. III partitions the total set of repair schedules into

finer and finer subsets and, in general, needs to make calculations for

only a fraction of the total subsets.

Considerable computation can be saved if it is recognized that one

need consider only those repair schedules that open additional clear

paths to the runway as each arc is repaired (the terminal nodes of each

repaired arc have access to the runway at the time the arc is repaired).

Suppose a schedule does not have this property. Then the first arc

later in the repair sequenj:e that did open an additional clear path to

the runway could be placed in the repair sequence immediately ahead of

at, arc that did not, without increasing the loss; repeated

r,3rrangements of the arc repair sequence of this type will eventually

lead to a ropair schedule that clears additional paths to the runway as

ca-.h arc is repaired and has no greater loss than the original schedule.

Both the heuristic rule and the branch-and-bound algorithm

automatically exclude repair schedules that do not create additional

clear paths to the runway as each arc is repaired.

zA
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In the network representation for the taxiways of an airbase, an

undamaged arc may be removed and its terminal nodes combined into a

single node (including the aircraft from both nodes). After undamaged

arcs are removed one at a time, a reduced network consisting of only

damaged arcs will remain. If two or more arcs join the same nodes, the

arcs with the larger repair times may be discarded until only one

remains. This further reduces the size of the network (the computer

program described in the appendix automatically performs both

reductions). Hereafter, it is assumed that all arcs are damaged--the

reduced network representation of the taxiway system is used.
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II. THE HEURISTIC RULE

The heuristic rule determines an arc repair schedule by

sequentially z-ecting arcs to be repaired. It works outward from the

runway to the nodes that do not have access to the runway and uses a

criterion for selecting the next arc to be repaired that approximates

the (current) maximum of the number of aircraft that will have access to

the runway per unit of repair time expended.

STEPS IN THE HEURISTIC RULE

While there are still nodes with aircraft not having access to the

runway, select the next are to be repaired by the following steps:

1. For each node k still without access to the runway, perform

the following calculations:

a. By using a shortest path algorithm, determine the

minimum-repair-time path from the given node to the

runway; ties are settled by selecting the first such

path found.

b. Set T k equal to the total1 repair time for the arcs on the

path of step l.a and set A k equal to the total number of

aircraft at nodes on this path.

2. Find K, the value of k that maximizes A k/TkV
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3. Working outward from the runway to node K along the minimum-

repair-time path to node K, find the first arc on the path

that has not yet been repaired. This is the next arc to be

repaired.

AN EXAMPLE TAXIWAY REPAIR SCHEDULE PROBLEM

In Fig. 3, damaged arcs are indicated by including the arc repair

time alongside the arc. The figure contains the same network

representation as that of Fig. 2, but only the nodes are numbered that

will remain after the network is reduced. Figure 4 contains the reduced

network representation. The top number alongside each arc is the arc

number and the bottom number is the arc repair time. The top number at

each node is the node number, and the bottom number is the number of

aircraft at the node. Table I summarizes the data for the reduced

network.

Table 1

DATA FOR THE EXAMPLE PROBLEM

Node Air- Arc From To Repair
Number craft Number Node Node Time

2 2 1 1 2 1
3 1 2 1 5 3

4 15 3 1 6 2
5 18 4 1 7 2
6 2 5 2 3 1
7 19 6 2 4 1
8 9 7 3 4 1

8 5 6 1
9 7 8 1
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Table 2 summarizes the values obtained for the example problem

during the steps of the heuristic rule and presents the arc repair

sequence selected.

From Table 2, the arc repair schedule obtained by the heuristic

rule is to repair arcs in the sequence 4916385 with a loss of 315 time

units. From Sec. III, this is an optimal schedule. Note that this

schedule does not include arcs 2 and 7 because all of the aircraft have

clear paths to the runway without repair of these two arcs.
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Table 2

REPAIR SCHEDULE SELECTED BY THE HEURISTIC RULE

Nodes Values on the Repair Aircraft Cum.
in Minimum-repair-time Path Sequence Reaching Time

Step Step Nodes Arcs Ak Tk  A k/Tk  Selected Runway Loss

1 2 1,2 1 2 1 2.00
3 1,2,3 1,5 3 2 1.50
4 1,2,4 1,6 17 2 8.50
5 1,6,5 3,8 20 3 6.67
6 1,6 3 2 2 1.00
7 1,7 4 19 2 9.50 4 19 132

8 1,7,8 4,9 28 3 9.33
2 2 1,2 1 2 1 2.00

3 1,2,3 1,5 3 2 1.50
4 1,2,4 1,6 17 2 8.50
5 1,6,5 3,8 20 3 6.67
6 1,6 3 2 2 1.00
8 1,7,8 4,9 9 1 9.00 9 28 179

3 2 1,2 1 2 1 2.00
3 1,2,3 1,5 3 2 1.50
4 1,2,4 1,6 17 2 8.50 1 30 217
5 1,6,5 3,8 20 3 6.67
6 1,6 3 2 2 1.00

4 3 1,2,3 1,5 1 1 1.00
4 1,2,4 1,6 15 1 15.00 6 45 253
5 1,6,5 3,8 20 3 6.67
6 1,6 3 2 2 1.00

5 3 1,2,3 1,5 1 1 1.00
5 1,6,5 3,8 20 3 6.67 3 47 295
6 1,6 3 2 2 1.00

7 3 1,2,3 1,5 1 1 1.00
5 1,6,5 3,8 18 1 18.00 8 65 314

8 3 1,2,3 1,5 1 1 1.00 5 66 315
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I1. A BRANCH-AND-BOUND SOLUTION

Branclh-and-bound procedures are eninierat ive schenles that set a

framework for a structured search of the possible solutions for an

optimal solution. In general, only a small fraction of the possible

solutions need actually be enumerated, the remaining solutions being

eliminated through the application of bounds establishing that such

solutions cannot be optimal. The set of all possible solutions is

partitioned successively into smaller and smaller subsets, and a lower

bound (for the case of minimization considered here) is calculated for

the loss associated with the solutions in each subset. After each

partitioning, those subsets whose lower bound exceeds the loss of a

known solution (or some otherwise determined upper bound on the minimum

loss) are discarded. The partitioning continues until a solution is

found whose loss is no greater than the lower bound of any remaining

subset. This is an optimal solution.

A survey of branch-and-bound methods is given in Lawler and Wood

(1966). Applications of branch and bound to s, heduling problems may be

found in Ignall and Schrage (1965) and Miller (1974).

The branch-and-bound solution process used here may be represented

as a tree structure, as illustrated in Fig. 5. A node of order k

represents all repair schedules having the same repair sequence for the

first k repaired arcs; the node of order zero represents all repair

schedules. Note that the repair schedules represented by the nodes of

order k form a partition of the total set of repair schedules. In the

figure, the partial repair schedule is the circled sequence of numbers.



Node
order

0
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Fig. 5--Branch-and.bound tree for four damaged arcs
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A node of order N - 1 represents only one complete repair schedule

because once a sequence of N - 1 repaired arcs is specified there is

only one possibility for the last arc to be repaired.

The partial repair schedule associated with a node in the tree is

the partial repair schedule (PRS) of the node, and the subset of repair

schedules represented by the node is the PRS class of the node.

LOWER BOUNDS FOR THE PRS CLASSES

The nodes of order k are formed by adding N - k + 1 new nodes for

each node of order k - 1, by adding one arc to the partial repair

schedule for each arc that is not yet included. (Thus, after each order

is generated there are a total of N(N - 1) 000 (N - k + 1) nodes).

The node immediately above a given node on the same branch will be

called the predecessor of the given node and a node immediately below, a

successor to the given node.

For each node of order k, a lower bound for the node and the value

of the time loss for aircraft with access to the runway after completion

of the PRS for the node are obtained from:

LB = L + (A -R)T + IP jA.j (3.1)

L = L0+ (R R R0)T (3.2)

where LB = the lower bound on the losses for all repair schedules in

the given PRS class,

L = the total loss for those aircraft with access to the

runway after completion of the given PRS,
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L0 = the total loss for those aircraft with access to the

runway after completion of the predecessor PRS of the

given PRS (equals zero when k = 1),

R = the number of aircraft with access to the runway after

completion of the given PRS,

R0 = the number of aircraft with access to the runway after

completion of the predecessor PRS of the given PRS (equals

the number of aircraft with access to the runway without

repairs when k = 1).

T =the repair time for for the arc repaired last in the given

PRS,

A = the total number of aircraft at the airbase,

P. = the repair time for the minimum-repair-time path from node

j to the runway (after completion of the given PRS),

A. = the number of aircraft at node j,
a

and the summation is over all taxiway nodes.

Because, when the lower bound LB is formed, the loss associated

with each aircraft is the repair time of the given PRS plus the time for

repairing the arcs in the minimum-repair-time path for the aircraft

after the given PRS is completed, it follows that each LB is a lcwer

bound for all repair schedules in the corresponding PRS class.

The PRSs associated with nodes of order N are complete repair

schedules, and the lower bounds for the corresponding classes are the

actual losses for those repair schedules. Any repair schedule of order

N with the minimum loss is an optimal schedule.
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PRUNING THE TREE (ELIMINATION OF PRS CLASSES)

When carried to completion, the successive partitionings of the set

of repaii schedules generates N! Nth order nodes. Obviously, it would

be desirable to eliminate as many as possible of the branches (nodes

plus their successor nodes) to avoid generating the entire tree. Any

node (and its successor nodes) whose repair schedules can be shown not

to be optimal can be discarded--any node whose lower bound is larger

than the loss for any given repair schedule, e.g., the one selected by

the heuristic rule. This is the "bound" part of the branch-and-bound

procedure. In applying bounding, the loss for the repair schedule of

the heuristic rule or any better repair schedule found is used if nodes

of order N have been generated.

A node can be discarded if it can be shown by some other means that

there is a better repair schedule--one with a smaller loss than any

repair schedule represented by the node. A given node

is "dominated" by another node if the latter node represents at least

one repair schedule with a smaller loss than any repair schedule of the

given node. (Thus, as used here, bounding is a particular case of

dominance.) The following describes three dominance criteria that are

used along with bounding to substantially reduce the number of nodes

that a-e actually generated:

1. As discussed in Sec. I, any node with a PRS whose last-repaired

arc does not add a clear path to the runway is dominated by

some other node.
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2. Any node with a PRS whose last-repaired arc has both of its

terminal nodes already joined to the runway by clear paths not

involving the just-repaired arc is dominated by some other

node.

3. If two PRSs clear paths to the runway for the same taxiway

nodes, the corresponding node with the larger lower bound is

dominated by the one with the smaller lower bound; if the two

lower bounds are equal an arbitrary one of the two nodes

can be discarded. (Because the two PRSs clear paths

for the same taxiway nodes, comparing lower bounds is

equivalent to comparing the values of L from Eq. (3.2), the

total loss for all aircraft with access to the runway after

completion of a given PRS.)

BRANCHING STRATEGIES

The order in which the nodes of the branch-and-bound tree are

generated is called the "branching strategy." Because all nodes are

either added to the tree or discarded by the application of hounding or

the dominance criteria, one branching strategy is better than nother if

it uses bounding and the dominance criteria to greater effect--finds an

optimal solution with less computational cost.

The branching strategy used here, a "breadth-first"' strategy, is to

generate nodes of order k before those of order k + 1. This permits

an efficient scheme to be used for applying the third dominance

criterion (see the appendix). For all (remaining) nodes of order k, the

successor nodes of order k + 1 are generated one at a time, using
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bounding and the dominance criteria to eliminate as many nodes as

possible. (The kth order node is discarded after all its k +- 1st order

successor nodes have been generated.)

One alternative branching strategy, a "depth-first" strategy,

starts by generating the nodes of order 1. These nodes are then ordered

by the values of their lower bounds. Then the successor nodes to the

node with the smallest lower bound are generated and added to the list,

the predecessor node and any dominated nodes having been discarded.

This process is repoated until a node appears lowest on the list that

has a complete repair schedule. This repair schedule is optimal because

the PRS classes represented by the nodes remaining on the list have

lower bounds larger than that of the repair schedule (whose lower bound

is its actual loss). This branching strategy obtains complete schedules

earlier in the procedure than does the selected strategy, so it may

prune more nodes in applying bounding than the selected strategy when

the heuristic rule has selected a poor repair schedule.

The alternative branching strategy has not been compared with the

selected branching strategy because the computer program described

in the appendix carried out only the selected branching strategy.

A SINPLIFIED ALGORITHM WHEN THE REDUCED TAXIWAY NETWORK HAS NO LOOPS

When the reduced network representation for the damaged taxiway

network has no loops, the calculation of the lower bound may be

simplified. Although this has no general applicability to the taxiway

repair schedule problem (there will normally be loops), the

simplifiv~ation is presented here as it may be useful in other

similar scheduling problems.
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By far the largest computational cost of the branch-and-bound

algorithm is the determination of the P.s of Eq. (3.1), which requires

solving a shortest path problem for each node added to the branch-and-

bound tree. When the reduced node-arc representation for the taxiway

structure has no loops (reduces to a tree), there is only one possible

path to the runway for each taxiway node. This fact may be utilized to

determine each lower bound by only one multiplication and three

additions and subtractions as each node is generated from its

predecessor node. The remainder of the algorithm is unchanged except

that the second dominance criterion is no longer relevant because there

are no loops.

The lower bound for the PRS class represented by each node is

determined as follows from that of its predecessor node: Initially,

calculate a lower bound for all repair schedules (for the PRS class of

order zero) as

LBO = A.P.

where LB0 = the (initial) lower bound for each repair schedule,

A. = the number of aircraft at node j,J

P. = the minimum-repair-time path from node j to node 1a

(the runway) without any repairs.

The lower bound for every other node in the branch-and-bound tree

is calculated from

LB = LB 0 + (A - R - C)T

where LB = the lower bound for the given PRS class,
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LBO = the lower bound for the PRS class of the predecessor

node of the given node,

A =the number of aircraft on the airbase,

R = the number of aircraft with access to the runway after

completion of the predecessor PRS of the given PRS,

C = the number of aircraft whose paths to the runway include

the arc added in forming the given PRS fiam its

predecessor PRS.

THE OPTIMAL SOLUTION FOR THE EXAMPLE PROBLEM

Figure 6 contains nodes of the branch-and-bound tree for the

example problem of Fig. 3 and Table 1. To save space in the figure,

each node is identified by the number of the last arc in the PRS; the

PRS is obtained, in reverse order, by moving upward from predecessor

node to predecessor node to the node of order zero. Only those nodes

for which lower bounds were calculated are included in the figure (nodes

eliminated by the first two dominance criteria are not included). Nodes

in the figure with no successor nodes are eliminated by bounding or the

third dominance criterion. Table 3 summarizes the node elimination

process for those nodes. In the table "Branched from" indicates nodes

for which successor nodes were generated; "Dom. by X" indicates nodes

dominated by node "X" according to the third dominance criterion; andI "LB > UB" indicates that the lower bound for the node is larger than the

loss (315 time units) for the repair schedule of the heuristic rule of

Sec. II.

The last two entries in Table 3 contain optimal repair schedules

for the excample problem, arc repair sequences 4916385 and 4916387, and

the minimum loss, 315 time units.
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Table 3

PRS CLASSES FOR WHICH LOWER BOUNDS WERE CALCULATED

PRS LB DispoitiGa PRS_--- LB Disposition

1 205 Branched from 492 329 LB > UB

2 299 Branched from 493 307 Branched from

3 249 Branched from 1632 435 LB > UB

4 233 Branched from 1634 350 LB > UB

12 341 LB > UB 1635 338 LB > UB

13 293 Branched from 1637 358 LB > UB

14 277 Dom. by 41 1638 341 LB > UB

15 268 Branched from 1652 390 LB > UB

16 254 Branched from 1653 358 LB > UB

21 329 LB > UB 1654 342 LB > UB

23 393 LB > UB 4132 432 LB > UB

24 339 LB > UB 4135 354 LB > UB

28 345 LB > UB 4136 349 LB > UB

31 295 Dom. By 13 4138 337 LB > UB

32 423 LB > UB "4139 346 LB > UB

34 321 LB > UB 4152 382 LB > UB

38 295 Branched from 4153 354 LB > UB

41 262 Branched from 4156 335 LB > UB

42 318 LB > UB 4157 335 LB > UB

43 287 Branched from 4159 341 LB > UB

49 271 Branched from 4162 326 LB > UB
132 461 LB > UB 4163 312 Branched from

134 361 LB > UB 4165 321 LB > UB

135 354 LB > UB 4167 323 LB > UB

136 340 LB > UB 4169 313 Dom. by 4916

138 337 LB > UB 4381 323 LB > UB

152 401 LB > UB 4389 332 LB > UB

153 354 LB > UB 4912 343 LB > UB

154 338 LB > UB 4913 323 LB > UB

156 316 LB > UB 4915 326 LB > UB

157 316 LB > UB 4916 312 Branched from

162 345 LB > UB 4931 325 LB > UB

163 312 Branched from 4932 397 LB > UB

164 296 Dom. by 416 4938 325 LB > UB

165 302 Branched from 41632 378 LB > UB

167 302 Dom. by 165 41635 339 LB > UB

381 323 LB > UB 41637 339 LB > UB

384 331 LB > UB 41638 322 LB > UB

412 341 LB > UB 41639 331 LB > UB

413 312 Branched from 49162 319 LB > UB

415 306 Branched from 49163 314 Branched from

416 292 Branched from 49165 332 LB > UB

419 298 Dom. by 491 49167 332 LB > UB

431 314 Dom. by 413 491632 353 LB > VB

432 404 LB > UB 491635 332 LB > UB

438 314 Branched from 491637 332 LB > UB

439 323 LB > UB 491638 315 Branched from

491 291 Branched from 4916385 315 Optimal Sol.
4916387 315 Optimal sol.

t14
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IV. RESULTS FOR EXAMPLE PROBLEMS

The branch-and-bound algorithm is too expensive computationally to

be practical as a general purpose procedure (at least for a large number

of damaged arcs). Although the heuristic rule is efficient, it is an ad

hoc procedure with no guarantee that it will produce optimal or near-

optimal solutions for all taxiway repair schedule problems. For some

empirical evidence that the heuristic rule provides good solutions, the

optimal and heuristic rule solutions were compared for 100 example

problems.

The example problems were generated by Monte Carlo sampling of the

damaged arcs and their repair times, with the taxiway node-arc

representation and aircraft locations of Fig. 2 for the airbase of Fig.

1. As the taxiway system for this airbase is more complex than that of

most airbases, the set of example problems should provide a

representative replacement set for the range of problems generated by

actual attacks against NATO airbases.

Each problem was created by first selecting damaged arcs at random

from a specified subset of the arcs. Seventy-five of the problems had

the damaged arcs chosen from arcs in the individual aircraft squadron

areas--10 problems with 10 damaged arcs in each of the three squadron

areas and 15 problems with 20 damaged arcs in each of the three squadron

areas (except that the left-most squadron area has only 18 arL3). In

the remaining 25 problems, 20 damaged arcs were chosen at random from

the entire set of 82 arcs. The repair time for each damaged arc was

selected uniformly at random over the range of I to 5 time units.



- 25 -

The optimal repair schedule provided by the branch-and-bound

algorithm and the repair schedule of the heuristic rule were obtained

for each example problem by use of the computer program described in the

appendix. Table 4 summarizes the set of example problems and the

results of the comparison between the losses for the optimal repair

schedules and the losses for the repair schedules of the heuristic rule.

From the last entry in the table, the heuristic rule produces the

optimal solution in 59 percent of the problems and, over all the example

problems, the losses for the heuristic rule solutions average less than

1 perrent higher than the losses for the optimal solutions.

Table 4

COMPARISON OF THE HEURISTIC RULE AND OPTIMAL REPAIR
SCHEDULE LOSSES FOR ONE HUNDRED EXAMPLE PROBLEMS

Squadron Taxiway Number Number Both Opt. Sol. Repair Schedule
Area Arc of Arcs of Solns. Average Loss Differences

Damaged Numbers Damaged Problems Iden. Loss Max.(%) Ave.(%)
Left 7-24 io 10 7 136 2 0.3
Center 27-49 10 10 4 162 7 1.2
Right 51-80 10 10 6 158 8 1.1
Left 7-24 18 15 6 390 3 0.7
Center 27-49 20 15 8 452 3 0.8
Rjght 51-80 20 15 11 517 2 0.2
All 1-82 20 25 17 324 10 1.1
Summary 100 59 330 10 0.8

. . . . . . . . .. . . . - . . . . . . . . . . . .. . . ...I . . . . .I " 1 - I I I . . . I . ..
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Appendix

SOME COMPUTER PROGRAM DETAILS

A FORTRAN computer program was written combining the heuristic rule

of Sec. II and the branch-and-bound algorithm of Sec. III. Although the

heuristic rule is computationally quite efficient, the branch-and- bound

algorithm may (potentially) have to evaluate a very large number of

nodes in the branch-and-bound tree. Several computational algorithms

and list processing schemes were used to help minimize the program

computer memory and computation time required for the branch- and-bound

algorithm.

The computer program first performs the network reduction process

(described in Sec. I) that eliminates undamaged arcs and multiple arcs

with the same terminal nodes (keeping one such arc with the shortest

repair time). The remaining nodes and arcs are renumbered and the

reduced taxiway network is used for both the heuristic rule and the

branch-and-bound algorithm.

Both procedures have steps requiring the determination of the

minimum-repair-tima paths from all other nodes in the network to node 1

(the runway). This is equivalent to finding the shortest paths to a

given node from all other nodes in a network. Both procedures use a

FORTRAN 5ubroutine for a "label correcting" algorithm, the steps of

which are (in terms of repair times):

1 Assign a label D(i) (a value larger than the repair time of any

minimum-repair-time path) to each node i, except for node 1,

where D(l) = 0.
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2. Search for an arc such that R(i,j) + D(j) < D(i) for any nodes

i and j, where R(i,j) is the repair time of arc (i,j). Replace

D(i) by the value of R(i,j) + D(j).

3. If any arc is found in Step 2, repeat the search. When no more

can be found, terminate the algorithm. The last value of D(i)

is the repair time of the minimum-repair-time path from node i

to node 1, and the last arc found for each node is part of the

minimum-repair-time path to node 1 for that node.

Label-correcting algorithms have the desirable property of

simultaneously generating the minimum-repair-time paths from all nodes

to the first node. Starting from a given node and moving from cne node

to the next node (through the last arc used for each node at step 2)

until node 1 is reached, the minimtim-repair-time path is generated for

the starting node.

Label-correcting algorithms differ in how the search in step 2 is

carried out. This Note uses the one in Goldein (1976). The speed of

this version of the algorithm compared very favorably with several othel

shortest path algorithms for a class of sparse networks (networks with a

small number of arcs at each node, as in taxiway networks) for a sample

set of problems with up to a thousand nodes (Denardo and Fox, 1979).

Step 2 is as follows: starting with node 1 as the first member, a

list of "active" nodes is formed and used sequentially, from the top of

the list, as the node j of step 2. Any node i that is not currently

active (in the list) and whose label is decreased at step 2 is added to

the bottom of the list. After being used in step 2, node j becomes

inactive and is deleted from the top of the list (it may subsequently
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become active again and added back to the bottom of the list). When the

list is empty the algorithm is complete and the value of the label at a

given node is the repair time of the minimum-repair-time path from that

node to node 1.

Any kth order node (PRS class) in the branch-and-bound tree that is

not eliminated by the second dominance criterion of Sec. III has k arcs

in its PRS that have cleared paths to the runway for k taxiway nodes.

One word of memory (32 bits) is used to indicate the arcs in the PRS

(the PRS arc-word) and one word to indicate the taxiway nodes with

cleared paths to the runway (the PRS node-word). A one in the bit

position corresponding to the arc number in the arc-word indicates that

the arc is in the PRS, a zero indicates the contrary. The PRS node-

word indicates the taxiway nodes with cleared paths to the runway in a

similar fashion. Thus, for the branch-and-bound algorithm, the maximum

number of both arcs and nodes in the reduced taxiway network is 32 in

the current version of the computer program. (For the heuristic rule,

the practical limits for the numbers of arcs and nodes are much larger;

they have been arbitrarily set to 300 for both arcs and nodes in the

computer program.)

Thirty-two half-words of memory are used for each PRS to indicate

the node numbers of the nodes already having access to the runway and

the arc numbers for the adjoining arcs not in the PRS but that have a

terminal node cleared to the runway by the PRS. For a kth order PRS,

the first k entries contain the node numbers of the nodes and entries

k + I up tc 32 the arc numbers of any contiguous arcs. This list is used

to directly generate for each PRS class the successor PRS classes that

are not elimit1ed by the first dominance criterion of Sec. III. The
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PRSs of the (surviving) successor PRS classes are generated by adding

one of the adjoining arcs to the PRS, adding the taxiway node cleared by

the added arc to the k nodes .leared to the runway by the PRS, and

determining any new adjoining arcs for the added node. A successor PRS

class is eliminated by the second dominance criterion if both terminal

nodes of the added arc already have paths cleared to the runway by the

predecessor PRS.

The PRS node-word representation conserves memory and allows for an

efficient application of the third dominance criterion of Sec. III. All

PRSs clearing paths to the runway for the same nodes have the same

numerical values for their node-words. As the PRS classes of order k

are generated their PRSs are placed in an ordered list (called a heap),

using the numerical value of the PRS node-word for the ordering. With a

subroutine for the Heapsort algorithm of (Williams, 1964), the entries

in the heap with the same numerical value are found in order, and all

PRS classes with the same PRS node-word value are discarded except fcr

one with the smallest loss.
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